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In this work a conjecture to draw the bifurcation diagram of a map with multiple critical points
is enunciated. The conjecture is checked by using two quartic maps in order to verify that
the bifurcation diagrams obtained according to the conjecture contain all the periodic orbits
previously counted by Xie and Hao for maps with four laps.
We show that a map with split bifurcation contains more periodic orbits than those counted by
these authors for a map with the same number of laps.
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1. Introduction

The bifurcation diagram of a map with one critical point was studied for the first time by May ([May,
1976]). He used the logistic difference equation xn+1 = axn(1 − xn), and gave a catalogue of its stable
cycles. Starting from the cubic-difference equation xn+1 = ax3n+(1−a)xn, Testa and Held ([Testa & Held,
1983]) showed that the bifurcation diagram of this map, with two critical points, exhibits a split bifurcation
not found in maps with one critical point. As a result, the final states of the system depend on the initial
conditions, and the number of periodic orbits is different to the number of periodic orbits of the logistic
map. Jánosi and Gallas ([Jánosi & Gallas, 1999]) found that the bifurcation diagram of the quartic map
f(x) = 1 − a(1 − ax2)2, with three critical points, preserves the basic bifurcation structure of the logistic
map in parameter space; however, in sharp contrast with the logistic case, it displays two coexisting stable
attractors.
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In previous works, we have studied quartic maps and bifurcation diagrams of maps with more than a
critical point ([Danca et al., 2009], [Danca et al., 2013], [Romera et al., 2015], and [Pastor et al., 2016]).
As a further step, in current paper we introduce a conjecture to draw the bifurcation diagram of any map
with multiple critical points.

By using this conjecture, we have drawn the bifurcation diagrams of two quartic maps which have three
critical points and four laps. On the other hand, Xie & Hao ([Xie & Hao, 1994]) and Hao ([Hao, 2000])
already counted the number of periodic orbits in maps with multiple critical points. Thus, we can see if
the number of periodic orbits of our two quartic maps with three critical points and four laps coincides
with the number of orbits given by Xie & Hao and Hao for the same type of maps.

There are two scenarios, bifurcation diagrams with and without split bifurcation. As we shall see, in
the cases without split bifurcation, the number of periodic orbits given by Xie & Hao and Hao coincides
with the number of periodic orbits of our bifurcation diagrams. However, in the cases with split bifurcation,
we find a number of periodic orbits greater than the given by Xie & Hao and Hao for the same number of
laps.

2. Conjecture

In order to draw the bifurcation diagram of any map with multiple critical points we introduce the following

Conjecture
The bifurcation diagram of a map with multiple critical points is the set of bifurcation diagrams corre-

sponding to each one of the critical values of the map.
Xie and Hao ([Xie & Hao, 1994]) and Hao ([Hao, 2000]) have counted the number of periodic orbits in

maps with multiple critical points and they have also shown that a map with 4 laps has 2 period-1 orbits,
4 period-2 orbits, 10 period-3 orbits, 32 period-4 orbits, and 102 period-5 orbits. This fact allows us to
verify the conjecture in the quartic maps xn+1 = 1−a(1−ax2n)

2 and xn+1 = 1−a(1− bx2n)
2 when b = 1.5,

by computing the values of the parameter a that cause orbits of periods 1, 2, 3, 4 and 5 and checking that
these orbits and their corresponding bifurcation diagrams are inside the bifurcation diagram defined by
the conjecture.

3. The quartic map xn+1 = 1− a(1− ax2
n
)2

Let us consider the second iteration of the quadratic map xn+1 = 1 − ax2n, i.e. xn+2 = 1 − a(1 − ax2n)
2.

Obviously, the quartic map xn+1 = 1 − a(1 − ax2n)
2 coincides with the just seen second iteration of the

quadratic map xn+1 = 1− ax2n.
The quartic map xn+1 = 1 − a(1 − ax2n)

2, has three critical points (0,
√

1/a and −
√

1/a), four laps,

and two critical values (1 − a and 1) (Fig. 1). Obviously, the critical points
√

1/a and −
√

1/a are real
when a > 0, complex when a < 0 and tends to infinity when a tends to 0. We will only study this map
when a > 0.

Fig. 1. Critical points and critical values of the quartic map xn+1 = 1− a(1− ax2n)
2.



February 28, 2018 14:48 ”Bifurcation diagrams of maps with multiple critical points D 12”

Bifurcation diagram of a map with multiple critical points 3

4. Bifurcation diagram of the map xn+1 = 1 − a(1 − ax2
n
)2

According to the Conjecture, the bifurcation diagram of this map is the set of the two bifurcation diagrams
obtained when the initial points are the critical values 1− a and 1 (Fig. 2).

Fig. 2. Bifurcation diagram of the map xn+1 = 1 − a(1 − ax2n)
2. (a) Component corresponding to the critical value 1 − a.

(b) Component corresponding to the critical value 1.
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4.1. Initiation of the bifurcation diagram

It is easy to see that the initiation of the bifurcation diagram, aini in Fig. 2, happens when the graph of
the map is tangent to the straight line xn+1 = xn in a point xini, that is

4a2inixini(1− ainix
2
ini) = 1. (1)

Since xini belongs to xn+1 = xn, then 1− aini(1− ainix
2
ini)

2 = xini and, therefore,

aini(1− ainix
2
ini)

2 = 1− xini (2)

Dividing member by member Eq. (1) by Eq. (2) one obtains

xini =
2 aini ±

√

4 a2ini − 3 aini

3 aini
(3)

Substituting Eq. (3) into Eq. (1) one gets aini = −0.25 and, finally, xini = 2.

4.2. First split bifurcation

The map xn+1 = 1− a(1 − ax2n)
2 presents the split bifurcation. As is known, according to [Testa & Held,

1983], a split bifurcation qualitatively resembles to a pitchfork bifurcation with half of the pitchfork missing.

Fig. 3. First split bifurcation of the map xn+1 = 1− a(1− ax2n)
2. (a) a = 0.66. (b) a = af.s.b. = 0.75. (c) a = 0.84.

In Fig. 3 we analyze the first split bifurcation of the map xn+1 = 1−a(1−ax2n)
2 that starts, as calculated

later, in af.s.b. = 0.75 (see Fig. 2). Shortly before this value, for instance when a = 0.66 , the map has a
stable fixed point (with slope lower than 1) that can be reached by iteration from the critical value 1 − a
and also from the critical value 1. When a = 0.75, the map is tangent to the straight line xn+1 = xn in a
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neutral inflection point (slope equal to 1), that is also reached by iteration from the critical values 1 − a
and 1. Analytically, we have f(x) = 1− a(1 − ax2)2, f ′(x) = 4 a2x(1− ax2), f ′′(x) = 4 a2(1− 3 ax2), and

the inflection point
(

√

1/3 a, 1− 4 a/9
)

. Therefore,
√

1/3 a = 1 − 4 a/9 and a = 0.75. Shortly after this

value, for instance when a = 0.84, the fixed point is unstable (slope greater than 1) and in its proximity
two stable fixed points appear; one of them is reached by iteration from the critical value 1 − a and the
other one is reached from the critical value 1.

As will be seen later, the split bifurcation also appears when the graph of the period-p iteration of the
map is tangent to the line xn+p = xn in p inflection points, and what has just been described above also
occurs in each one of these inflection points.

4.3. Parameter values of superstable period-1, 2, . . . 5 orbits

The parameter values of superstable period orbits are obtained by iterating the map xn+1 = 1−a(1−ax2n)
2,

first with the initial point x0 = 1 − a and then with the initial point x0 = 1. In each case, the values of
the parameter a corresponding to the period-i superstable orbits (i = 1, 2, . . . 5) are the solutions of the
equations in a that are obtained from xn+1 = 1− a(1− ax2n)

2 making xi = x0.
The results are summarized in Tables 1 and 2.

Table 1. Equations for the parameter values of superstable orbits with initial
point x0 = 1− a for the map xn+1 = 1− a(1− ax2n)

2.

Period Equation

1 a− a

(

1− a(1− a)2
)2

= 0 (4)

2 a− a

(

1− a

(

1− a

(

1− a(1− a)2
)2
)2
)2

= 0 (5)

i

(i=3,4,5) a− a

2i
︷ ︸︸ ︷
(

1− a · · ·
(

1− a

2i
︷ ︸︸ ︷

)2
· · ·

)2

= 0 (6)

Table 2. Equations for the parameter values of superstable orbits with
initial point x0 = 1 for the map xn+1 = 1− a(1− ax2n)

2.

Period Equation

1 a(1− a)2 = 0 (7)

2 a

(

1− a

(

1− a(1− a)2
)2
)2

= 0 (8)

i

(i=3,4,5) a

2i−1
︷ ︸︸ ︷
(

1− a · · ·
(

1− a

2i−1
︷ ︸︸ ︷

)2
· · ·

)2

= 0 (9)



February 28, 2018 14:48 ”Bifurcation diagrams of maps with multiple critical points D 12”

6 Romera et al.

4.4. Number of period-1 orbits

The number of period-1 orbits is calculated by means of Eq. (4) and Eq. (7). Eq. (4) has the solutions
a = 0 (fixed point x = 1), a = 1 (fixed point x = 0), and a = 2 (see Fig. 2(a)). This later solution is an
unstable fixed point and should be neglected. However, it is the end of the bifurcation diagram aend = 2.
As can be remarked in Fig. 4(a), when a = 2, the graphical iteration from the critical values 1− a and 1
leads to the unstable fixed point M and, when a > 2, this iteration goes to the infinity (Fig. 4(b)).

Eq. (7) has the solutions a = 0 (fixed point x = 1) and a = 1 (fixed point x = 1 ) as can be seen in
Fig. 2(b). Note that in the a-axis of Fig. 2(b) there are two 11, one in a = 0 and another one in a = 1.
This can also be observed in Table 3.

Fig. 4. Graphical iteration of the map xn+1 = 1− a(1− ax2n)
2 from the critical values 1− a and 1. (a) a = 2. (b) a = 2.04.

As a result, in the quartic map xn+1 = 1− a(1− ax2n)
2 there are two period-1 orbits in the bifurcation

diagram of Fig.2, (see Table 3), what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994])
and Table 1 of Hao ([Hao, 2000]) for maps with four laps. However, let us note the obvious first split
bifurcation that begins in af.s.b. = 0.75.

Table 3. Period-1 orbits of the map xn+1 = 1− a(1− ax2n)
2.

Number a Initial Orbit Observations Figure

11

0 1− a Fixed point 1 Fig. 2(a)
0 1 Fixed point 1 Fig. 2(b)
1 1 Fixed point 1 Half of the pitchfork bifurcation Fig. 2(b)

21 1 1− a Fixed point 0 Half of the pitchfork bifurcation Fig. 2(a)

4.5. Number of period-2 orbits

The number of period-2 orbits is calculated by means of Eq. (5) and Eq. (8). Neglecting the solutions a = 0
and a = 2 (corresponding to fixed points), we have the solutions showed in Table 4.

As a result, in the quartic map xn+1 = 1 − a(1 − ax2n)
2 there are 4 period-2 orbits in the bifurcation

diagram of Fig. 2, what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of
Hao ([Hao, 2000]).
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Table 4. Period-2 orbits of the map xn+1 = 1−a(1−ax2n)
2.

Number a Initial Orbit Figure

12 1.310702 1− a −0.310702, 0 Fig. 2(a)

22 1.310702 1 1, 0.873470 Fig. 2(b)

32 1.940799 1− a −0.940799, 0 Fig. 5(a)

42 1.940799 1 1, −0.717810 Fig. 5(b)

Fig. 5. Some period-2 windows in the map xn+1 = 1 − a(1 − ax2n)
2. (a) Magnification of the a axis of Fig. 2(a). (b)

Magnification of the a axis of Fig. 2(b).
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4.6. Number of period-3 orbits

The number of period-3 orbits is calculated by means of Eq. (6) and Eq. (9) making i = 3. Neglecting the
solutions a = 0 and a = 1 (corresponding to fixed points), we have the valid solutions of Table 5.

Table 5. Period-3 orbits of the map xn+1 = 1− a(1− ax2n)
2.

Number a Initial Orbit Observations Figure

13 1.476014 1− a −0.476014, 0.346187, 0 Fig. 6(a)

23 1.476014 1 1, − 0.665551, 0.823104 Fig. 6(f)

33
1.754877 1− a −0754877, 1, 0 Fig. 6(b)
1.754877 1 1, 0, − 0754877 Fig. 6(g)

43 1.772892903 1− a −0.772892903, 0.993815707, 0 Half of the pitchfork bifurcation Fig. 6(b)

53 1.772892903 1 1, − 0, 059061402. − 0.751032532 Half of the pitchfork bifurcation Fig. 6(g)

63 1.907280 1− a −0.907280, 0.380344, 0 Fig. 6(c)

73 1.907280 1 1, − 0.569990, 0.724090 Fig. 6(h)

83 1.966773 1− a −0.966773, − 0.381960, 0 Fig. 6(d)

93 1.966773 1 1, − 0.838244, 0.713054 Fig. 6(i)

103 1.996376 1− a −0.996376, − 0.924888, 0 Fig. 6(e)

113 1.996376 1 1, − 0.981932, − 0.707748 Fig. 6(j)

As can be seen from Table 5, the quartic map xn+1 = 1− a(1− ax2n)
2 has 11 period-3 orbits, instead

of the 10 period-3 orbits of Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of Hao ([Hao, 2000])
both for maps with four laps. Our new results (in Table 5) are due to the existence of one split bifurcation
that is not considered in the mentioned works.

The period-3 orbits of Table 5 are shown in Fig. 6. In Fig. 6(a) and Fig. 6(f) one can see that there
exists a period doubling bifurcation cascades. Also, Fig. 6(b) and Fig. 6(g) reveal a split bifurcation with
the orbits 33 and 43 (Fig. 6(b)) and also with the orbits 33 and 53 (Fig. 6(g)).

Figs. 7(a) and 7(b) are, respectively, magnifications of the x axis of Fig. 6(b) and Fig. 6(g) to better
show the split bifurcation that begins when a = 1.768550 with the x values −0.763, −0.029 and 0.999.

In Fig. 8 we can see the graph of the third iteration of the map xn+1 = 1 − a(1 − ax2n)
2, i.e.

xn+3 = 1− a

(

1− a

(

1− a
(

1− a
(

1− a(1− ax2n)
2
)2
)2
)2
)2

, for the parameter value a = 1.768550. Note

that it has three inflection points located on the straight line xn+3 = xn in the x values −0.763, −0.029
and 0.999, according to Fig. 7.
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Fig. 6. Period-3 windows of the map xn+1 = 1 − a(1 − ax2n)
2. (a) - (e): magnification of the a axis of Fig. 2(a). (f) - (j):

magnification of the a axis of Fig. 2(b).
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Fig. 7. Map xn+1 = 1− a(1− ax2n)
2. Detail of the split bifurcation in a period-3 window. (a) Magnification of the x axis of

Fig. 6(b). (b) Magnification of the x axis of Fig. 6(g).

Fig. 8. Map xn+1 = 1− a(1− ax2n)
2. Graph of the third iteration for a = 1.768550.
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4.7. Number of period-4 orbits

The number of period-4 orbits can be calculated by means of Eq. (6) and Eq. (9) making i = 4. Neglecting
the solutions a = 0 and a = 1 (corresponding to fixed points), and a = 1.940799 (period-2 orbit), we have
16 solutions that originate 32 orbits. Some of them are shown in Table 6.

Table 6. Some of the period-4 orbits of the map xn+1 = 1− a(1− ax2n)
2.

Number a Initial Orbit

14 1.381547 1− a −0.381547, 0.118290, − 0.328648, 0

24 1.381547 1 1, 0.798877, 0.980668, 0.850779

· · · · · · · · · · · ·

94 1.851730 1− a −0.851730, 0.781731, 0.967931, 0

104 1.851730 1 1, − 0.343326, − 0.131598, − 0.734869

· · · · · · · · · · · ·

154 1.917098 1− a −0.917098, 0.280997, − 0.380632, 0

164 1.917098 1 1, − 0.612411, 0.848627, 0.722249

· · · · · · · · · · · ·

234 1.981655 1− a −0.981655, − 0.639620, 0.929005, 0

244 1.981655 1 1, − 0.909615 0.189277, − 0.710269

· · · · · · · · · · · ·

314 1.999774 1− a −0.999774, − 0.995257, − 0.923926, 0

324 1.999774 1 1, − 0.998870, − 0.980852, − 0.707086

As a result, in the quartic map xn+1 = 1− a(1− ax2n)
2 there are 32 period-4 orbits in the bifurcation

diagram of Fig. 2, what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of
Hao ([Hao, 2000]) for maps with four laps.

4.8. Number of period-5 orbits

The number of period-5 orbits is calculated by means of Eq. (6) and Eq. (9) making i = 5. Neglecting the
solutions a = 0, a = 1, and a = 2 (corresponding to fixed points), we obtain the solutions of Table 7. Both
Eq. (6) and Eq. (9), with i = 5, have 54 solutions that originate 2× 54− 3 = 105 orbits because there are
three split bifurcations. Some of these orbits are shown in Table 7.

As a result, in the quartic map xn+1 = 1− a(1− ax2n)
2 there are 105 period-5 orbits instead of the 102

period-5 orbits of Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of Hao ([Hao, 2000]).

4.9. Summary of the analysis of xn+1 = 1 − a(1− ax2
n
)2

Summarizing the results of the analysis of xn+1 = 1 − a(1 − ax2n)
2, three cases can be considered. In the

first case, for period-2 and period-4 orbits, the number of orbits given by us coincide with the number
given by Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of Hao ([Hao, 2000]). This is because
for period-2 and period-4 orbits there are no split bifurcation.

In the second case, for period-3 and period-5 orbits, we have found a number of orbits greater that
the number given in the just mentioned tables. For period-3 orbits, we find one more orbit because there
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Table 7. Some of the period-5 orbits of the map xn+1 = 1− a(1− ax2n)
2.

Number a Initial Orbit Observations

15 1.447008 1− a −0.447008, 0.268786, − 0.160280, − 0.341427, 0

25 1.447008 1 1, 0.710864, 0.895459, 0.962826, 0.831318

· · · · · · · · · · · · · · ·

75
1.625413 1− a −0.625413, 0.784362, 1, 0.364233, 0
1.625413 1 1, 0.364233, 0, − 625413, 0.784362

85 1.629432 1− a −0.629432, 0.795293, 0.998474, 0.364596, 0 Half of the pitchfork bifurcation

95 1.629432 1 1, 0.354444, − 0.030602, − 0.624462, 0.783398 Half of the pitchfork bifurcation

· · · · · · · · · · · · · · ·

245
1.860782 1− a −0.860782, 0.733084, 1, − 0.378738, 0
1.860782 1 1, − 0.378738, 0, − 0.860782, 0.733084

255 1.861558 1− a 1, − 0.861558, 0.728636, 0.999746, − 0.378771, 0 Half of the pitchfork bifurcation

265 1.861558 1 1, − 0.381801, 0.011678, − 0.860612, 0.732926 Half of the pitchfork bifurcation

· · · · · · · · · · · · · · ·

735
1.985424 1− a −0.985424, − 0.709692, 1, − 0.927953, − 0
1.985424 1 1, − 0.927966, 0, − 0.985424, − 0.709692

745 1.985482 1− a −0.985482, − 0.710786, − 0.000017, − 0.927953, 0 Half of the pitchfork bifurcation

755 1.985482 1 1, − 0.928250, 0, − 0.985406, − 0.709693 Half of the pitchfork bifurcation

· · · · · · · · · · · · · · ·

1045 1.999986 1− a −0.999986, − 0.999706, − 0.995229, − 0.924516, 0

1055 1.999986 1 1, − 0.999930, − 0.998810, − 0.980950, − 0.709447

is one split bifurcation, and for period-5 orbits we find three more orbits because there are three split
bifurcations.

In the third case, for period-1 orbit, although there is one split bifurcation, the number of orbits given
by us coincide with the number given by Table IV of Xie and Hao ([Xie & Hao, 1994]) and Table 1 of Hao
([Hao, 2000]). This is explained in section 4.4 where we can see that for a = 0 the map xn+1 = 1−a(1−ax2n)

2

is reduced to xn+1 = 1 and, consequently, as shown in Fig. 2 and Table 3, there are only two fixed points
in total.
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5. Map xn+1 = 1 − a(1− bx2
n
)2 for a given value of b

For a given value of b, the map xn+1 = 1 − a(1 − bx2n)
2 has three critical points: 0 (critical value 1 − a),

√

1/b (critical value 1), and −
√

1/b (critical value 1). In accordance with the Conjecture, the bifurcation
diagram of this map is the set of bifurcation diagrams obtained by taking as initial points the critical values
1− a, Fig. 9(a), and 1, Fig. 9(b).

The values of the parameter a that originate period-i orbits (i = 1, 2, 3, 4, 5) taking as initial point
x0 = 1 − a are obtained as follows: first, by iteration, we obtain xi (i = 1, 2, 3, 4, 5); next we consider
xi = 1− a. In this way we obtain the results in Table 8.

Table 8. Equations for the parameter values of periodic orbits with initial point x0 = 1−a

for the map xn+1 = 1− a(1− bx2n)
2 with a given b.

Period Equation

1 a− a
(

1− b(1− a)2
)2

= 0 (10)

2 a− a

(

1− b

(

1− a

(

1− b(1− a)2
)2
)2
)2

= 0 (11)

i

(i=3,4,5) a− a

i
︷ ︸︸ ︷
(

1− b

(

1− a · · ·
(

1− b

(

1− a

2i
︷ ︸︸ ︷

)2
· · ·

)2

= 0 (12)

Similarly, the values of the parameter a that originate period-i orbits (i = 1, 2, 3, 4, 5) by taking as
initial point x0 = 1 are obtained as follows: first, by iteration we obtain xi (i = 1, 2, 3, 4, 5); next consider
xi = 1. In this case we obtain the results in Table 9.

Table 9. Equations for the parameter values of periodic orbits with initial point x0 = 1 for
the map xn+1 = 1− a(1− bx2n)

2 for a given b.

Period Equation

1 a(1− b)2 = 0 (13)

2 a

(

1− b

(

1− a(1− b)2
)2
)2

= 0 (14)

i

(i=3,4,5) a

i−1
︷ ︸︸ ︷
(

1− b

(

1− a · · ·
(

1− b

(

1− a (1− b

2i−1
︷ ︸︸ ︷

)2 · · ·

)2

= 0 (15)

Let us note that Fig. 9(b) has two different parts: a standard bifurcation diagram when aini < a <
aend(s) and a hidden bifurcation diagram ([Pastor et al., 2016]) when aend(s) < a < aend(h). Inside the hidden
bifurcation diagram, the periodic windows are very narrow, being between orbits that go to infinity, and
hence, are very difficult to detect. The standard part was drawn quickly and with good resolution using a
sweep of the parameter △a = 2× 10−4, while the hidden part was drawn, very slowly and with very poor
resolution, using a sweep of △a = 10−9.
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Fig. 9. Bifurcation diagram of the map xn+1 = 1− a(1− bx2n)
2 when b = 1.5. (a) Component corresponding to the critical

value 1− a. (b) Component corresponding to the critical value 1.
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5.1. Number of superstable period-1 orbits

The parameter values of period-1 orbits of the map xn+1 = 1− a(1− bx2n)
2 when b = 1.5 can be calculated

by means of Eq. (10) and Eq. (13) with b = 1.5.
Eq. (10) has the solutions a = −0.154700 (neutral period-1 orbit and initial point of the bifurcation

diagram aini), a = 0 (superstable fixed point 1), a = 1 (superstable fixed point 0), and a = 2.154700
(unstable period-1 orbit and the end of standard bifurcation diagram aend(s) = 2.154700, Fig. 10).

Fig. 10. Graphical iteration of the map xn+1 = 1 − a(1− bx2n)
2 when b = 1.5, starting from the critical value 1− a. (a) If

a = aend(s) = 2.154700 an unstable fixed point M is obtained. (b) If a > aend(s) the orbit always goes to infinity.

Eq. (13) has only the solution a = 0 (superstable fixed point 1). Let us note that aend(s) in Fig. 9(b)
obviously coincides with aend(s) in Fig. 9(a) but a = 2.154700 is not a solution of period-1 orbit in Eq. (13).
This is because the iteration starting from the critical value 1 goes to the same point M of Fig. 10 but
now M is a Misiurewicz point with preperiod-3 and period-1, as we can see in Fig. 11(a). For this reason,
when a > aend(s) and it is inside the hidden part of the bifurcation diagram, the orbit can go to infinity,
Fig. 11(b), or can be periodic, Fig. 11(c).

Fig. 11. Graphical iteration of the map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5, starting from the critical value 1. (a)

a = aend(s) = 2.154700. (b) a = 2.155000, orbit to infinity. (c) a = 2.647048, period-3 orbit.

In this way, the superstable period-1 orbits of the map xn+1 = 1−a(1−bx2)2, when b = 1.5, are shown
in Table 10.
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Table 10. Superstable period-1 orbits of the map
xn+1 = 1− a(1− bx2n)

2 when b = 1.5.

Number a Initial Orbit Figure

11 0
1− a Fixed point 1 Fig. 9(a)
1 Fixed point 1 Fig. 9(b)

21 1 1− a Fixed point 0 Fig. 9(a)

As a result, in the quartic map xn+1 = 1− a(1− bx2n)
2 when b = 1.5 there are 2 period-1 orbits in the

bifurcation diagram of Fig. 9, what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994])
and Table 1 of Hao ([Hao, 2000]).

5.2. Number of superstable period-2 orbits

The parameter values of period-2 orbits of map when b = 1.5 are calculated by means of Eq. (11) and
Eq. (14) with b = 1.5 .

Neglecting the period-1 solutions, a = −0.154700, a = 0, and a = 1, Eq. (11) has the solutions a =
1.276969 and a=2.063378. Neglecting the period-1 solution a = 0, Eq. (14) has the solutions a = 0.734013
and a = 7.265986. In this way, the superstable period-2 orbits of the map xn+1 = 1 − a(1 − bx2n)

2 when
b = 1.5 are shown in Table 11.

Table 11. Superstable period-2 orbits of the map xn+1=
1− a(1− bx2n)

2 when b = 1.5.

Number a Initial Orbit Figure

12 1.276969 1− a −0.276969, 0 Fig. 9(a)

22 2.063378 1− a −1.063378. 0 Fig. 12(a)

32 0.734013 1 1, 0.816496 Fig. 9(b)

42 7.265986 1 1, −0.816496 Fig. 12(b)

In Fig. 12 one can see the bifurcation diagrams of two period-2 orbits: number 22 in the standard
diagram of Fig. 9(a), and 42 in the hidden diagram of Fig. 9(b). Note that on the left and on the right side
of these bifurcation diagrams, in the first case the orbits are finite whereas in the second case the orbits
go to infinity.

Note that the orbit number 32 of Table 11 and Fig. 9(b) was only obtained starting from the critical
value 1 according to Eq. (14). However, it also appears in Fig. 9(a) because it was asymptotically achieved
(not directly) as we see in Fig. 13. For this reason 32 was not obtained by Eq. (11).

As a result, in the quartic map xn+1 = 1− a(1− bx2n)
2 when b = 1.5 there are 4 period-2 orbits in the

bifurcation diagram of Fig. 9, what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994])
and Table 1 of Hao ([Hao, 2000]).
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Fig. 12. Two magnifications of Fig. 9 showing period-2 windows of the map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5. (a)

Magnification from Fig. 9(a). (b) Magnification from Fig. 9(b).

Fig. 13. Graphical iteration of the map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5 and a = 0.734013, starting from the critical

values 1− a and 1.
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5.3. Number of superstable period-3 orbits

In order to obtain the parameter values of period-3 orbits of the map xn+1 = 1− a(1− bx2n)
2, one can use

Eq. (12) and Eq. (15) with i = 3 and b = 1.5.
Neglecting the period-1 solutions of Eq. (12), a = −0.154701, a = 0, a = 1 and a = 2.154700 (all of

them already considered) and the period-1 solution a = 0 of Eq. (15), the superstable period-3 orbits are
given in Table 12.

Table 12. Superstable period-3 orbits of the map xn+1 = 1 − a(1 − bx2n)
2

for b = 1.5.

Number a Initial Orbit Figure

13 1.393188 1 1, 0.651702, 0.816496 Fig. 9(b)

23 1.469512 1− a −0.469512, 0.341639, 0 Fig. 9(a)

33 2.008810 1− a −1.008810, 0.443055, 0

43 2.104971 1− a −1.104971, − 0.455155, 0

53 2.148601 1− a −1.148601, − 1.058997, 0 Fig. 14(a)

63 2.647048 1 1, 0.338238, − 0.816496

73 6.213427 1 1, − 0.553356, − 0.816496

83 6.989708 1 1, − 0.747427, 0.816496

93 7.511953 1 1, − 0.877988, 0.816496

103 7.969769 1 1, − 0.992442, − 0.816496 Fig. 14(b)

As a result, in the quartic map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5 there are 10 period-3 orbits in

the bifurcation diagram of Fig. 9, in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994]) and
Table 1 of Hao ([Hao, 2000]).

In Fig. 14 one can see the bifurcation diagrams of period-3 orbits 53 and 103 (Table 12). They are
obtained by extending a and x axes in the bifurcation diagrams of Fig. 9(a) and Fig. 9(b), respectively.
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Fig. 14. Two of the ten period-3 windows of the map xn+1 = 1− a(1− bx2n)
2 when b = 1.5. (a) Window of the orbit 53. (b)

Window of the orbit 103.
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5.4. Number of superstable period-4 orbits

The parameter values of period-4 orbits of the map xn+1 = 1− a(1− bx2n)
2 when b = 1.5 are calculated by

means of Eq. (12) and Eq. (15) with i = 4 and b = 1.5. The trivial solutions of Eq. (12) a = −0.154701,
a = 0 and a = 1 (period-1 orbits), and a = 1.276969 and a = 2.063378 (period-2 orbits) have been ignored
as the trivial solutions of Eq. (15) a = 0 (period-1 orbit), and a = 0.734013 and 7.265986 (period-2 orbits).
Some superstable period-4 orbits are shown in Table 13.

Table 13. Superstable period-4 orbits of the map xn+1 = 1− a(1− bx2n)
2 when b = 1.5.

Number a Initial Orbit Figure

14 0.998045 1 1, 0.750488, 0.975975, 0.816496 Fig. 9(b)

24 1.355856 1− a −0, 355856, 0.110313, − 0.306809, 0 Fig. 9(a)

· · · · · · · · · · · ·

94 2.094798 1− a −1.094798, − 0.333554, − 0.453948, 0

104 2.114330 1− a −1.114330, − 0.573217, 0.456228, 0

· · · · · · · · · · · ·

134 2.154292 1− a −1.154292, − 1.148206, − 1.058714, 0 Fig. 15(a)

144 2.336039 1 1, 0.415990, − 0.280696, − 0.816498

· · · · · · · · · · · ·

194 6.186371 1 1, − 0.546593, − 0.884019, 0.816485

204 6.242787 1 1, − 0.560697, − 0.743217, 0.816506

· · · · · · · · · · · ·

254 7.270185 1 1, − 0.817546, 0.999952, − 0.816497 Fig. 15(b)

264 7.468297 1 1, − 867074, 0.878162, 0.816496

· · · · · · · · · · · ·

314 7.979806 1 1, − 0.994951, − 0.876220, 0.816504

324 7.998742 1 1, − 0.999686, − 0.992147, − 0.816388

As a result, in the quartic map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5 there are 32 period-4 orbits in

the bifurcation diagram of Fig. 9, in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994]) and
Table 1 of Hao ([Hao, 2000]).

In Fig. 15 one can see the bifurcation diagrams of period-4 orbits 134 and 254 (Table 13). They are
obtained by extending a and x axes in the bifurcation diagrams in Fig. 9(a) and Fig. 9(b), respectively.
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Fig. 15. Map xn+1 = 1 − a(1 − bx2n)
2 for b = 1.5. (a) Period-4 orbit 134 in a period-4 window. (b) Period-4 orbit 254 in a

period-2 window.
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5.5. Number of superstable period-5 orbits

The parameter values of period-5 orbits of the map xn+1 = 1− a(1− bx2n)
2 with b = 1.5 are calculated by

means of Eq. (12) and Eq. (15) making i = 5. One ignore the trivial solutions of Eq. (12) a = −0.154701,
a = 0 and a = 1 (period-1 orbits). Also the trivial solution of Eq. (15) a = 0 (period-1 orbit) is ignored.
Some of the superstable period-5 orbits are shown in Table 14.

Table 14. Some period-5 orbits of the map
xn+1 = 1− a(1− bx2n)

2 with b = 1.5.

Number a Initial Figure

15 1.266106204944 1

25 1.433632715233 1− a

· · · · · · · · ·

225 2.116858295007 1− a

235 2.136856683482 1

· · · · · · · · ·

405 2.685191489972 1

415 2.716369883125 1

605 6.324813814383 1 Fig.16(a)

615 6.816582379086 1

· · · · · · · · ·

805 7.543751023347 1

815 7.556786579882 1

· · · · · · · · ·

1015 7.999159621025 1

1025 7.999947622533 1 Fig.16(b)

As a result, in the quartic map xn+1 = 1 − a(1 − bx2n)
2 when b = 1.5 there are 102 period-5 orbits in

the bifurcation diagram of Fig. 9, what is in accordance with Table IV of Xie and Hao ([Xie & Hao, 1994])
and Table 1 of Hao ([Hao, 2000]).

In Fig. 16 one can see the bifurcation diagrams of the orbits 605 and 1025 with the parameter values
given in Table 14.
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Fig. 16. Magnifications of Fig. 9(b) showing the bifurcation diagrams of two period-5 orbits of the map xn+1 = 1−a(1−bx2n)
2

with b = 1.5. (a) Orbit 605. (b) Orbit 1025.



February 28, 2018 14:48 ”Bifurcation diagrams of maps with multiple critical points D 12”

24 REFERENCES

5.6. Summary of the analysis of xn+1 = 1 − a(1 − bx2
n
)2 for a given value of b

If we summarize the results of the analysis of the map xn+1 = 1− a(1− bx2n)
2 for a given b, in all the cases

the number of orbits given by us coincides with the number given by Xie and Hao in Table IV of [Xie &
Hao, 1994] and by Hao in Table 1 of [Hao, 2000]. This is because in no one of the cases there exists any
split bifurcation.

6. Conclusions

In this paper we have enunciated a conjecture to draw the bifurcation diagram of a map with multiple
critical points. The conjecture has been verified using two maps with three critical points. In this way, we
have been able to verify the existence of the periodic orbits counted by Xie and Hao ([Xie & Hao, 1994])
and Hao ([Hao, 2000]), until period-5, for maps with four laps. Those orbits appear in the drawn diagrams.

One of the important findings of this paper is the fact that one of the two used maps exhibits split
bifurcation and its bifurcation diagram contains more periodic orbits than those counted by the previous
authors. The question of knowing if a map with multiple critical points exhibits split bifurcation is an open
problem.
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